3.1.24 \(\int (a+b x^2) \sqrt {c+d x^2} \sqrt {e+f x^2} \, dx\) [24]

Optimal. Leaf size=381 \[ \frac {\left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) x \sqrt {c+d x^2}}{15 d^2 f \sqrt {e+f x^2}}+\frac {(b d e-2 b c f+5 a d f) x \sqrt {c+d x^2} \sqrt {e+f x^2}}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}-\frac {\sqrt {e} \left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d^2 f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {e^{3/2} (b d e+b c f-10 a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}} \]

[Out]

1/15*(5*a*d*f*(c*f+d*e)-2*b*(c^2*f^2-c*d*e*f+d^2*e^2))*x*(d*x^2+c)^(1/2)/d^2/f/(f*x^2+e)^(1/2)-1/15*e^(3/2)*(-
10*a*d*f+b*c*f+b*d*e)*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1
-d*e/c/f)^(1/2))*(d*x^2+c)^(1/2)/d/f^(3/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)-1/15*(5*a*d*f*(c*f+
d*e)-2*b*(c^2*f^2-c*d*e*f+d^2*e^2))*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1+f*x
^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/d^2/f^(3/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(
1/2)+1/5*b*x*(d*x^2+c)^(3/2)*(f*x^2+e)^(1/2)/d+1/15*(5*a*d*f-2*b*c*f+b*d*e)*x*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2)/
d/f

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 381, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {542, 545, 429, 506, 422} \begin {gather*} -\frac {\sqrt {e} \sqrt {c+d x^2} \left (5 a d f (c f+d e)-2 b \left (c^2 f^2-c d e f+d^2 e^2\right )\right ) E\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d^2 f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {e^{3/2} \sqrt {c+d x^2} (-10 a d f+b c f+b d e) F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac {x \sqrt {c+d x^2} \left (5 a d f (c f+d e)-2 b \left (c^2 f^2-c d e f+d^2 e^2\right )\right )}{15 d^2 f \sqrt {e+f x^2}}+\frac {x \sqrt {c+d x^2} \sqrt {e+f x^2} (5 a d f-2 b c f+b d e)}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2],x]

[Out]

((5*a*d*f*(d*e + c*f) - 2*b*(d^2*e^2 - c*d*e*f + c^2*f^2))*x*Sqrt[c + d*x^2])/(15*d^2*f*Sqrt[e + f*x^2]) + ((b
*d*e - 2*b*c*f + 5*a*d*f)*x*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])/(15*d*f) + (b*x*(c + d*x^2)^(3/2)*Sqrt[e + f*x^2]
)/(5*d) - (Sqrt[e]*(5*a*d*f*(d*e + c*f) - 2*b*(d^2*e^2 - c*d*e*f + c^2*f^2))*Sqrt[c + d*x^2]*EllipticE[ArcTan[
(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(15*d^2*f^(3/2)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])
 - (e^(3/2)*(b*d*e + b*c*f - 10*a*d*f)*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)]
)/(15*d*f^(3/2)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 542

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \left (a+b x^2\right ) \sqrt {c+d x^2} \sqrt {e+f x^2} \, dx &=\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}+\frac {\int \frac {\sqrt {c+d x^2} \left (-(b c-5 a d) e+(b d e-2 b c f+5 a d f) x^2\right )}{\sqrt {e+f x^2}} \, dx}{5 d}\\ &=\frac {(b d e-2 b c f+5 a d f) x \sqrt {c+d x^2} \sqrt {e+f x^2}}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}+\frac {\int \frac {-c e (b d e+b c f-10 a d f)+\left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{15 d f}\\ &=\frac {(b d e-2 b c f+5 a d f) x \sqrt {c+d x^2} \sqrt {e+f x^2}}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}-\frac {(c e (b d e+b c f-10 a d f)) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{15 d f}+\frac {\left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{15 d f}\\ &=\frac {\left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) x \sqrt {c+d x^2}}{15 d^2 f \sqrt {e+f x^2}}+\frac {(b d e-2 b c f+5 a d f) x \sqrt {c+d x^2} \sqrt {e+f x^2}}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}-\frac {e^{3/2} (b d e+b c f-10 a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {\left (e \left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right )\right ) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{15 d^2 f}\\ &=\frac {\left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) x \sqrt {c+d x^2}}{15 d^2 f \sqrt {e+f x^2}}+\frac {(b d e-2 b c f+5 a d f) x \sqrt {c+d x^2} \sqrt {e+f x^2}}{15 d f}+\frac {b x \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}}{5 d}-\frac {\sqrt {e} \left (5 a d f (d e+c f)-2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d^2 f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {e^{3/2} (b d e+b c f-10 a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{15 d f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.70, size = 267, normalized size = 0.70 \begin {gather*} \frac {\sqrt {\frac {d}{c}} f x \left (c+d x^2\right ) \left (e+f x^2\right ) \left (b c f+5 a d f+b d \left (e+3 f x^2\right )\right )+i e \left (-5 a d f (d e+c f)+2 b \left (d^2 e^2-c d e f+c^2 f^2\right )\right ) \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-i e (-d e+c f) (-2 b d e+b c f+5 a d f) \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )}{15 d \sqrt {\frac {d}{c}} f^2 \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2],x]

[Out]

(Sqrt[d/c]*f*x*(c + d*x^2)*(e + f*x^2)*(b*c*f + 5*a*d*f + b*d*(e + 3*f*x^2)) + I*e*(-5*a*d*f*(d*e + c*f) + 2*b
*(d^2*e^2 - c*d*e*f + c^2*f^2))*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f
)/(d*e)] - I*e*(-(d*e) + c*f)*(-2*b*d*e + b*c*f + 5*a*d*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I
*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)])/(15*d*Sqrt[d/c]*f^2*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(864\) vs. \(2(409)=818\).
time = 0.13, size = 865, normalized size = 2.27

method result size
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (\frac {b \,x^{3} \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}{5}+\frac {\left (a d f +b c f +b d e -\frac {b \left (4 c f +4 d e \right )}{5}\right ) x \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}{3 d f}+\frac {\left (a c e -\frac {\left (a d f +b c f +b d e -\frac {b \left (4 c f +4 d e \right )}{5}\right ) c e}{3 d f}\right ) \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {\left (a c f +a d e +\frac {2 b c e}{5}-\frac {\left (a d f +b c f +b d e -\frac {b \left (4 c f +4 d e \right )}{5}\right ) \left (2 c f +2 d e \right )}{3 d f}\right ) e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )-\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(431\)
risch \(\frac {x \left (3 b d \,x^{2} f +5 a d f +b c f +b d e \right ) \sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}{15 d f}+\frac {\left (-\frac {\left (5 a c d \,f^{2}+5 a \,d^{2} e f -2 b \,c^{2} f^{2}+2 b c d e f -2 b \,d^{2} e^{2}\right ) e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )-\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}+\frac {10 a c d e f \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {b \,c^{2} e f \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {b c d \,e^{2} \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}}{15 d f \sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(538\)
default \(\frac {\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}\, \left (3 \sqrt {-\frac {d}{c}}\, b \,d^{2} f^{3} x^{7}+5 \sqrt {-\frac {d}{c}}\, a \,d^{2} f^{3} x^{5}+4 \sqrt {-\frac {d}{c}}\, b c d \,f^{3} x^{5}+4 \sqrt {-\frac {d}{c}}\, b \,d^{2} e \,f^{2} x^{5}+5 \sqrt {-\frac {d}{c}}\, a c d \,f^{3} x^{3}+5 \sqrt {-\frac {d}{c}}\, a \,d^{2} e \,f^{2} x^{3}+\sqrt {-\frac {d}{c}}\, b \,c^{2} f^{3} x^{3}+5 \sqrt {-\frac {d}{c}}\, b c d e \,f^{2} x^{3}+\sqrt {-\frac {d}{c}}\, b \,d^{2} e^{2} f \,x^{3}+5 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a c d e \,f^{2}-5 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e^{2} f +\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b \,c^{2} e \,f^{2}-3 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c d \,e^{2} f +2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b \,d^{2} e^{3}+5 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a c d e \,f^{2}+5 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e^{2} f -2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b \,c^{2} e \,f^{2}+2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c d \,e^{2} f -2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b \,d^{2} e^{3}+5 \sqrt {-\frac {d}{c}}\, a c d e \,f^{2} x +\sqrt {-\frac {d}{c}}\, b \,c^{2} e \,f^{2} x +\sqrt {-\frac {d}{c}}\, b c d \,e^{2} f x \right )}{15 \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right ) d \,f^{2} \sqrt {-\frac {d}{c}}}\) \(865\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/15*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2)*(3*(-d/c)^(1/2)*b*d^2*f^3*x^7+5*(-d/c)^(1/2)*a*d^2*f^3*x^5+4*(-d/c)^(1/2)
*b*c*d*f^3*x^5+4*(-d/c)^(1/2)*b*d^2*e*f^2*x^5+5*(-d/c)^(1/2)*a*c*d*f^3*x^3+5*(-d/c)^(1/2)*a*d^2*e*f^2*x^3+(-d/
c)^(1/2)*b*c^2*f^3*x^3+5*(-d/c)^(1/2)*b*c*d*e*f^2*x^3+(-d/c)^(1/2)*b*d^2*e^2*f*x^3+5*((d*x^2+c)/c)^(1/2)*((f*x
^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f^2-5*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)
*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2*f+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d
/c)^(1/2),(c*f/d/e)^(1/2))*b*c^2*e*f^2-3*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f
/d/e)^(1/2))*b*c*d*e^2*f+2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b
*d^2*e^3+5*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*d*e*f^2+5*((d
*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e^2*f-2*((d*x^2+c)/c)^(1/
2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c^2*e*f^2+2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/
e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*d*e^2*f-2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*Ellip
ticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*d^2*e^3+5*(-d/c)^(1/2)*a*c*d*e*f^2*x+(-d/c)^(1/2)*b*c^2*e*f^2*x+(-d/c)^
(1/2)*b*c*d*e^2*f*x)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)/d/f^2/(-d/c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b x^{2}\right ) \sqrt {c + d x^{2}} \sqrt {e + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)*(d*x**2+c)**(1/2)*(f*x**2+e)**(1/2),x)

[Out]

Integral((a + b*x**2)*sqrt(c + d*x**2)*sqrt(e + f*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (b\,x^2+a\right )\,\sqrt {d\,x^2+c}\,\sqrt {f\,x^2+e} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2),x)

[Out]

int((a + b*x^2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2), x)

________________________________________________________________________________________